Skip to content

CosmoTech_Acceleration_Library.Accelerators.scenario_download.scenario_downloader

ScenarioDownloader

Source code in CosmoTech_Acceleration_Library/Accelerators/scenario_download/scenario_downloader.py
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
class ScenarioDownloader:

    def __init__(self, workspace_id: str, organization_id: str, read_files=True):
        self.credentials = DefaultAzureCredential()
        scope = env.api_scope
        token = self.credentials.get_token(scope)

        self.configuration = cosmotech_api.Configuration(
            host=env.api_host,
            discard_unknown_keys=True,
            access_token=token.token
        )

        self.workspace_id = workspace_id
        self.organization_id = organization_id
        self.dataset_file_temp_path = dict()
        self.read_files = read_files

    def get_scenario_data(self, scenario_id: str):
        with cosmotech_api.ApiClient(self.configuration) as api_client:
            api_instance = ScenarioApi(api_client)
            scenario_data = api_instance.find_scenario_by_id(organization_id=self.organization_id,
                                                             workspace_id=self.workspace_id,
                                                             scenario_id=scenario_id)
        return scenario_data

    def download_dataset(self, dataset_id: str) -> (str, str, Union[str, None]):
        with cosmotech_api.ApiClient(self.configuration) as api_client:
            api_instance = DatasetApi(api_client)

            dataset = api_instance.find_dataset_by_id(
                organization_id=self.organization_id,
                dataset_id=dataset_id)
            parameters = dataset['connector']['parameters_values']

            is_adt = 'AZURE_DIGITAL_TWINS_URL' in parameters
            is_twin_cache = 'TWIN_CACHE_NAME' in parameters

            if is_adt:
                return {
                    "type": 'adt',
                    "content": self._download_adt_content(
                        adt_adress=parameters['AZURE_DIGITAL_TWINS_URL']),
                    "name": dataset['name']}
            elif is_twin_cache:
                twin_cache_name = parameters['TWIN_CACHE_NAME']
                return {
                    "type": "adt",
                    "content": self._read_twingraph_content(twin_cache_name),
                    "name": dataset["name"]
                }
            else:
                _file_name = parameters['AZURE_STORAGE_CONTAINER_BLOB_PREFIX'].replace(
                    '%WORKSPACE_FILE%/', '')
                _content = self._download_file(_file_name)
                self.dataset_file_temp_path[dataset_id] = self.dataset_file_temp_path[_file_name]
                return {
                    "type": _file_name.split('.')[-1],
                    "content": _content,
                    "name": dataset['name']
                }

    def _read_twingraph_content(self, cache_name: str) -> dict:
        with cosmotech_api.ApiClient(self.configuration) as api_client:
            api_instance = TwingraphApi(api_client)
            _query_nodes = TwinGraphQuery(
                query="MATCH(n) RETURN n"
            )
            nodes = api_instance.query(
                organization_id=self.organization_id,
                graph_id=cache_name,
                twin_graph_query=_query_nodes
            )
            _query_rel = TwinGraphQuery(
                query="MATCH(n)-[r]->(m) RETURN n as src, r as rel, m as dest"
            )
            rel = api_instance.query(
                organization_id=self.organization_id,
                graph_id=cache_name,
                twin_graph_query=_query_rel
            )

            content = dict()
            # build keys
            for item in rel:
                content[item['src']['label']] = list()
                content[item['dest']['label']] = list()
                content[item['rel']['label']] = list()

            for item in nodes:
                label = item['n']['label']
                prop = item['n']['properties']
                prop.update({'id': item['n']['id']})
                content[label].append(prop)

            for item in rel:
                src = item['src']
                dest = item['dest']
                rel = item['rel']
                props = item['rel']['properties']
                content[rel['label']].append({
                    'id': rel['id'],
                    'source': src['id'],
                    'target': dest['id'],
                    **props
                })

            return content

    def _download_file(self, file_name: str):
        tmp_dataset_dir = tempfile.mkdtemp()
        self.dataset_file_temp_path[file_name] = tmp_dataset_dir
        with cosmotech_api.ApiClient(self.configuration) as api_client:
            api_ws = WorkspaceApi(api_client)

            all_api_files = api_ws.find_all_workspace_files(
                self.organization_id, self.workspace_id)

            existing_files = list(
                _f.to_dict().get('file_name') for _f in all_api_files
                if _f.to_dict().get('file_name', '').startswith(file_name))

            content = dict()

            for _file_name in existing_files:
                dl_file = api_ws.download_workspace_file(organization_id=self.organization_id,
                                                         workspace_id=self.workspace_id,
                                                         file_name=_file_name)

                target_file = os.path.join(
                    tmp_dataset_dir, _file_name.split('/')[-1])
                with open(target_file, "wb") as tmp_file:
                    tmp_file.write(dl_file.read())
                if not self.read_files:
                    return {}
                if ".xls" in _file_name:
                    wb = load_workbook(target_file, data_only=True)
                    for sheet_name in wb.sheetnames:
                        sheet = wb[sheet_name]
                        content[sheet_name] = list()
                        headers = next(sheet.iter_rows(
                            max_row=1, values_only=True))

                        def item(_row: tuple) -> dict:
                            return {k: v for k, v in zip(headers, _row)}

                        for r in sheet.iter_rows(min_row=2, values_only=True):
                            row = item(r)
                            new_row = dict()
                            for key, value in row.items():
                                try:
                                    converted_value = json.load(
                                        io.StringIO(value))
                                except (json.decoder.JSONDecodeError, TypeError):
                                    converted_value = value
                                if converted_value is not None:
                                    new_row[key] = converted_value
                            if new_row:
                                content[sheet_name].append(new_row)
                elif ".csv" in _file_name:
                    with open(target_file, "r") as file:
                        # Read every file in the input folder
                        current_filename = os.path.basename(target_file)[:-len(".csv")]
                        content[current_filename] = list()
                        for row in csv.DictReader(file):
                            new_row = dict()
                            for key, value in row.items():
                                try:
                                    # Try to convert any json row to dict object
                                    converted_value = json.load(
                                        io.StringIO(value))
                                except json.decoder.JSONDecodeError:
                                    converted_value = value
                                if converted_value == '':
                                    converted_value = None
                                if converted_value is not None:
                                    new_row[key] = converted_value
                            content[current_filename].append(new_row)
                elif ".json" in _file_name:
                    with open(target_file, "r") as _file:
                        current_filename = os.path.basename(target_file)
                        content[current_filename] = json.load(_file)
                else:
                    with open(target_file, "r") as _file:
                        current_filename = os.path.basename(target_file)
                        content[current_filename] = "\n".join(
                            line for line in _file)
        return content

    def _download_adt_content(self, adt_adress: str) -> dict:
        client = DigitalTwinsClient(adt_adress, self.credentials)
        query_expression = 'SELECT * FROM digitaltwins'
        query_result = client.query_twins(query_expression)
        json_content = dict()
        for twin in query_result:
            entity_type = twin.get('$metadata').get(
                '$model').split(':')[-1].split(';')[0]
            t_content = {k: v for k, v in twin.items()}
            t_content['id'] = t_content['$dtId']
            for k in twin.keys():
                if k[0] == '$':
                    del t_content[k]
            json_content.setdefault(entity_type, [])
            json_content[entity_type].append(t_content)

        relations_query = 'SELECT * FROM relationships'
        query_result = client.query_twins(relations_query)
        for relation in query_result:
            tr = {
                "$relationshipId": "id",
                "$sourceId": "source",
                "$targetId": "target"
            }
            r_content = {k: v for k, v in relation.items()}
            for k, v in tr.items():
                r_content[v] = r_content[k]
            for k in relation.keys():
                if k[0] == '$':
                    del r_content[k]
            json_content.setdefault(relation['$relationshipName'], [])
            json_content[relation['$relationshipName']].append(r_content)

        return json_content

    def get_all_parameters(self, scenario_id) -> dict:
        scenario_data = self.get_scenario_data(scenario_id=scenario_id)
        content = dict()
        for parameter in scenario_data['parameters_values']:
            content[parameter['parameter_id']] = parameter['value']
        return content

    def get_all_datasets(self, scenario_id: str) -> dict:
        scenario_data = self.get_scenario_data(scenario_id=scenario_id)

        datasets = scenario_data['dataset_list']

        dataset_ids = datasets[:]

        for parameter in scenario_data['parameters_values']:
            if parameter['var_type'] == '%DATASETID%':
                dataset_id = parameter['value']
                dataset_ids.append(dataset_id)

        def process(_dataset_id, _return_dict):
            _c = self.download_dataset(_dataset_id)
            if _dataset_id in self.dataset_file_temp_path:
                _return_dict[_dataset_id] = (_c, self.dataset_file_temp_path[_dataset_id], dataset_id)
            else:
                _return_dict[_dataset_id] = _c

        manager = multiprocessing.Manager()
        return_dict = manager.dict()
        processes = [multiprocessing.Process(target=process, args=(dataset_id, return_dict)) for dataset_id in
                     dataset_ids]
        [p.start() for p in processes]
        [p.join() for p in processes]
        content = dict()
        for k, v in return_dict.items():
            if isinstance(v, tuple):
                content[k] = v[0]
                self.dataset_file_temp_path[v[2]] = v[1]
            else:
                content[k] = v

        return content

    def dataset_to_file(self, dataset_id, dataset_info):
        type = dataset_info['type']
        content = dataset_info['content']
        name = dataset_info['name']
        if type == "adt":
            return self.adt_dataset(content, name, type)
        return self.dataset_file_temp_path[dataset_id]

    @staticmethod
    def sheet_to_header(sheet_content):
        fieldnames = []
        has_src = False
        has_id = False
        for r in sheet_content:
            for k in r.keys():
                if k not in fieldnames:
                    if k in ['source', 'target']:
                        has_src = True
                    elif k == "id":
                        has_id = True
                    else:
                        fieldnames.append(k)
        if has_src:
            fieldnames = ['source', 'target'] + fieldnames
        if has_id:
            fieldnames = ['id', ] + fieldnames
        return fieldnames

    def adt_dataset(self, content, _name, _type):
        tmp_dataset_dir = tempfile.mkdtemp()
        for _filename, _filecontent in content.items():
            with open(tmp_dataset_dir + "/" + _filename + ".csv", "w") as _file:
                fieldnames = self.sheet_to_header(_filecontent)

                _w = csv.DictWriter(_file, fieldnames=fieldnames, dialect="unix", quoting=csv.QUOTE_MINIMAL)
                _w.writeheader()
                # _w.writerows(_filecontent)
                for r in _filecontent:
                    _w.writerow({k: str(v).replace("'", "\"") for k, v in r.items()})
        return tmp_dataset_dir