Redis Migration Tool: Architecture and Implementation Guide¶
This document outlines the architecture, implementation strategies, and language considerations for building a Redis migration tool with schema change detection capabilities.
Table of Contents¶
- Core Architecture
- Configurable Migration Strategies
- Language Comparison
- Implementation Examples
- Recommendations
Core Architecture¶
Key Components¶
- Schema Registry
- Store schema definitions using JSON format
- Track schema versions
-
Map Redis key patterns to schema versions
-
Change Detection
- Deep diff between schema versions
- Identify breaking vs. non-breaking changes
-
Field additions/removals/type changes
-
Migration Planning
- Automatic migration strategy generation
- Data transformation templates
-
Rollback plans
-
Safe Execution
- Atomic migrations where possible
- Backup mechanisms
- Progress tracking
- Validation of migrated data
Architecture Diagram¶
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Schema Registry │────▶│ Change Detector │────▶│ Migration │
└─────────────────┘ └─────────────────┘ │ Planner │
└─────────────────┘
│
▼
┌─────────────────┐ ┌─────────────────┐
│ Validation │◀───────────────────────── │ Migration │
│ Layer │ │ Executor │
└─────────────────┘ └─────────────────┘
Schema Definition Example¶
{
"version": "1.0.0",
"keyPattern": "user:*",
"fields": {
"name": {"type": "string", "required": true},
"age": {"type": "number"},
"preferences": {"type": "hash"}
}
}
Recommended Tools/Libraries¶
- Schema Management
- JSON Schema for validation
- Semver for version management
-
Redis Streams for change tracking
-
Data Processing
- RediSearch for efficient data scanning
- Redis Pipeline for bulk operations
-
Redis Multi/Exec for atomic operations
-
Monitoring/Validation
- Redis INFO command monitoring
- Progress tracking via Redis key scanning
- Checksums for data integrity
Configurable Migration Strategies¶
Migration Configuration Structure¶
┌─────────────────┐
│ Migration │
│ Registry │
└─────────────────┘
│
▼
┌─────────────────┐
│ Migration │
│ Config Store │
└─────────────────┘
│
├─────────────────┐
│ │
▼ ▼
┌─────────────────┐ ┌─────────────────┐
│ Version Graph │ │ Strategy Store │
└─────────────────┘ └─────────────────┘
Migration Definition Example¶
{
"migrations": {
"v1_to_v2": {
"source": "1.0.0",
"target": "2.0.0",
"strategy": "direct",
"transforms": [
{
"type": "renameField",
"from": "userName",
"to": "fullName"
},
{
"type": "addField",
"field": "createdAt",
"defaultValue": "${NOW}"
}
],
"validation": {
"required": ["fullName", "createdAt"]
}
},
"v2_to_v3": {
"source": "2.0.0",
"target": "3.0.0",
"strategy": "direct",
"transforms": [
{
"type": "splitField",
"from": "fullName",
"to": ["firstName", "lastName"],
"separator": " "
}
]
}
},
"paths": {
"1.0.0": {
"3.0.0": ["v1_to_v2", "v2_to_v3"]
}
}
}
Migration Chain Execution¶
class MigrationExecutor {
async migrate(sourceVersion, targetVersion, data) {
const path = this.resolvePath(sourceVersion, targetVersion);
let currentData = data;
for (const step of path) {
currentData = await this.executeStep(step, currentData);
await this.validate(step, currentData);
}
return currentData;
}
}
Features¶
- Flexible Configuration
- JSON-based migration definitions
- Pluggable transformation strategies
-
Custom validation rules
-
Path Management
- Automatic path resolution
- Manual path override capability
-
Path validation and optimization
-
Execution Control
- Step-by-step execution
- Progress tracking
- Partial migration support
-
Rollback capability
-
Validation System
- Pre-migration validation
- Post-step validation
- Final state validation
Migration Strategy Types¶
- Direct Transformations
- Field renaming
- Type conversions
- Field splitting/merging
-
Default value injection
-
Complex Transformations
- Custom functions
- Async transformations
- Batch processing
-
External service calls
-
Conditional Migrations
- Data-dependent transforms
- Feature flags
- Environment-specific paths
Language Comparison¶
Node.js/TypeScript¶
Pros¶
- Excellent async I/O handling
- Rich ecosystem for Redis clients (
ioredis
,node-redis
) - TypeScript provides strong typing and better maintainability
- JSON handling is native and efficient
- Large community and many utility libraries
- Easy to create CLI tools with packages like
commander
- Great for rapid prototyping
Cons¶
- Memory management can be challenging with large datasets
- Single-threaded nature (though worker threads are available)
- May not be as performant as compiled languages
- Type system is not as robust as some other languages
Python¶
Pros¶
- Clean, readable syntax
- Strong Redis support through
redis-py
- Excellent data processing libraries (pandas, numpy)
- Good async support with
asyncio
- Rich ecosystem for CLI tools
- Great for prototyping and quick iterations
Cons¶
- GIL can limit performance in CPU-intensive tasks
- Not as performant as compiled languages
- Type hints are optional and not as robust
- Memory usage can be high
Go¶
Pros¶
- Excellent performance
- Built-in concurrency support
- Strong type system
- Efficient memory management
- Single binary deployment
- Great Redis client (
go-redis
) - Good handling of large datasets
Cons¶
- More verbose than Python or Node.js
- Less flexible than dynamic languages
- Steeper learning curve
- Slower development cycle
- Fewer high-level data processing libraries
Rust¶
Pros¶
- Exceptional performance
- Memory safety guarantees
- Zero-cost abstractions
- Excellent concurrency model
- Strong type system
- Single binary deployment
- Growing Redis ecosystem
Cons¶
- Steepest learning curve
- Longer development time
- Stricter compiler rules
- Smaller ecosystem compared to others
- More complex error handling
Language Comparison Matrix¶
| Performance | Development Speed | Memory Efficiency | Ecosystem |
----------------+-------------+-------------------+-------------------+-----------+
Node.js/TS | ★★☆☆☆ | ★★★★★ | ★★☆☆☆ | ★★★★★ |
Python | ★★☆☆☆ | ★★★★☆ | ★★☆☆☆ | ★★★★☆ |
Go | ★★★★☆ | ★★★☆☆ | ★★★★☆ | ★★★☆☆ |
Rust | ★★★★★ | ★★☆☆☆ | ★★★★★ | ★★☆☆☆ |
Implementation Examples¶
Node.js/TypeScript Implementation¶
import { Redis } from 'ioredis';
import { Command } from 'commander';
async function migrateBatch(
redis: Redis,
keys: string[],
strategy: MigrationStrategy
): Promise<void> {
const pipeline = redis.pipeline();
for (const key of keys) {
const data = await redis.get(key);
const parsedData = JSON.parse(data);
const migratedData = applyTransforms(parsedData, strategy.transforms);
pipeline.set(key, JSON.stringify(migratedData));
}
await pipeline.exec();
}
Python Implementation¶
import redis
import asyncio
from typing import List, Dict, Any
async def migrate_batch(
redis_client: redis.Redis,
keys: List[str],
strategy: Dict[str, Any]
) -> None:
pipeline = redis_client.pipeline()
for key in keys:
data = redis_client.get(key)
parsed_data = json.loads(data)
migrated_data = apply_transforms(parsed_data, strategy["transforms"])
pipeline.set(key, json.dumps(migrated_data))
pipeline.execute()
Go Implementation¶
func migrateBatch(
ctx context.Context,
rdb *redis.Client,
keys []string,
strategy MigrationStrategy,
) error {
pipe := rdb.Pipeline()
for _, key := range keys {
data, err := rdb.Get(ctx, key).Result()
if err != nil {
return err
}
var parsedData map[string]interface{}
if err := json.Unmarshal([]byte(data), &parsedData); err != nil {
return err
}
migratedData, err := applyTransforms(parsedData, strategy.Transforms)
if err != nil {
return err
}
migratedJSON, err := json.Marshal(migratedData)
if err != nil {
return err
}
pipe.Set(ctx, key, migratedJSON, 0)
}
_, err := pipe.Exec(ctx)
return err
}
Rust Implementation¶
async fn migrate_batch(
redis: &Redis,
keys: Vec<String>,
strategy: MigrationStrategy,
) -> Result<(), Error> {
let mut pipe = redis.pipeline();
for key in keys {
let data: String = redis.get(&key).await?;
let parsed_data: Value = serde_json::from_str(&data)?;
let migrated_data = apply_transforms(parsed_data, &strategy.transforms)?;
let migrated_json = serde_json::to_string(&migrated_data)?;
pipe.set(&key, migrated_json);
}
pipe.execute().await?;
Ok(())
}
Recommendations¶
Decision Factors to Consider¶
- Team Expertise
- Existing language knowledge
- Learning curve tolerance
-
Maintenance requirements
-
Project Requirements
- Data volume
- Performance needs
- Deployment constraints
-
Integration requirements
-
Development Timeline
- Time to market
- Prototype vs production
-
Long-term maintenance
-
Operational Concerns
- Deployment environment
- Memory constraints
- CPU constraints
- Monitoring needs
Recommendations Based on Requirements¶
- For Rapid Development & Prototyping
- Node.js/TypeScript
-
Python
-
For Enterprise-Scale & Performance
- Go
-
Rust
-
For Balance of Performance & Development Speed
- Go
Best Practices¶
- Schema Management
- Use semantic versioning for schemas
- Store schema definitions in Redis itself
-
Implement schema validation
-
Migration Safety
- Always create backups before migrations
- Implement dry-run mode
- Use progressive migrations for large datasets
-
Validate data after each migration step
-
Performance Optimization
- Use Redis pipelines for batch operations
- Implement key scanning with cursor for large datasets
- Consider using RediSearch for efficient data filtering
-
Implement parallel processing where appropriate
-
Monitoring & Observability
- Track migration progress
- Implement detailed logging
- Create metrics for migration performance
- Set up alerts for migration failures